Bubble dynamics and size distributions during focused ultrasound insonation.

نویسندگان

  • Xinmai Yang
  • Ronald A Roy
  • R Glynn Holt
چکیده

The deposition of ultrasonic energy in tissue can cause tissue damage due to local heating. For pressures above a critical threshold, cavitation will occur, inducing a much larger thermal energy deposition in a local region. The present work develops a nonlinear bubble dynamics model to numerically investigate bubble oscillations and bubble-enhanced heating during focused ultrasound (HIFU) insonation. The model is applied to calculate two threshold-dependent phenomena occurring for nonlinearly oscillating bubbles: Shape instability and growth by rectified diffusion. These instabilities in turn are shown to place physical boundaries on the time-dependent bubble size distribution, and thus the thermal energy deposition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature distributions in tissues during local hyperthermia by stationary or steered beams of unfocused or focused ultrasound.

Temperature distributions resulting from insonation with stationary or steered beams of unfocused or focused ultrasound were measured in tissue-equivalent phantom, beef muscle in vitro, dog muscle mass, and transplanted murine tumours in vivo. Arrays of 4 to 6 thermocouples stepped through the volume of interest under computer control were used to measure the steady-state temperatures at 600 to...

متن کامل

Modeling and investigating the effect of ultrasound waves pressure on the microbubble oscillation dynamics in microvessels containing an incompressible fluid (Research Article)

Understanding the dynamics of microbubble oscillation in an elastic microvessel is important for the safe and effective applications of ultrasound contrast agents in imaging and therapy. Numerical simulations based on 2D finite element model are performed to investigate the effect of acoustic parameters such as pressure and frequency on the dynamic interaction of the fluid-blood-vessel system. ...

متن کامل

Quantitative detection of bubble dynamics by Doppler ultrasound

Bubble cavitation is one of the major mechanisms for ultrasound-induced bioeffects. Characterising the bubble dynamics, expansion and collapse, is of importance in understanding the cavitation phenomenon and estimating the consequent outcome. In this study, Doppler ultrasound method was firstly used to measure the bubble wall velocity. Bubbles were generated in water using a beam of high-intens...

متن کامل

In vitro parameter optimization for spatial control of focused ultrasound ablation when using low boiling point phase-change nanoemulsions

BACKGROUND Phase-shift nanoemulsions (PSNEs) provide cavitation sites when the perfluorocarbon (PFC) nanodroplets (ND) are vaporized to microbubbles by acoustic energy. Their presence lowers the power required to ablate tissue by high-intensity focused ultrasound (HIFU), potentially making it a safer option for a broader range of treatment sites. However, spatial control over the ablation regio...

متن کامل

Bubbles with shock waves and ultrasound: a review.

The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 116 6  شماره 

صفحات  -

تاریخ انتشار 2004